

Shanghai Jiao Tong University

CS296 Machine Learning for Finance in Python

	T				
To other of an	Jackson Jinhong Mi				
Instructor	Home Institution: Shanghai Maritime University Email: jhmi@shmtu.edu.cn				
Information					
	Office Hours: Determined by Instructor				
Term	March 22, 2021 - June 11, 2021	Credits	3 units		
Class Hours	Once per week, 150 mins per teaching day				
Discussion Sessions	1 hour each week, conducted by teaching assistant(s)				
Total Contact Hours	56 contact hours (1 contact hour = 45 mins, 2520 mins in total)				
	Python for Data Analysis, Wes McKinney, O'Reilly, 2012, ISBN: 978-1-449-31979-3				
Doguinad Toyts					
-	Required Texts Machine Learning for Finance: The Practical Guide to				
(with ISBN)	Data-Driven Algorithms in Banking, Insurance, and				
	Investments, Jannes Klaas, Packt Publishing, 2019				
	ISBN 978-1-78913-636-4				
	ISBN 9/8-1-/8913-030-4				
Prerequisite	Students are expected to have a thorough knowledge of all material covered in an introductory finance course.				

Course Overview

This course is designed for those students have no experience or limited experience on Python. This course will cover the basis syntax rules, modules, importing packages (Numpy, pandas), data visualization, and Intro for machine learning on Python. The aim of the course is to provide a broad understanding of the principles and techniques of Python coding for finance applications mainly through the use of Ipython and Jupyter notebook with intuitively visualized output. The learning objectives will be achieved through discussing theory and solving tasks together. Following the introductory class, the course is divided into three main sections. We will begin with the fundamentals of data reduction and clustering applied specifically to financial time series data with Python libraries. Next, we will introduce machine learning to structured data. Last, we will discuss parsing textual data with natural language processing and reinforcement learning for financial markets.

Course Goals

- 1. Use of Python with Jupyter notebook in financial problem solving.
- 2. Understand basic application of Machine Learning
- 3. Understand how data analytics can improve financial decision-making
- 4. Foundation for performing data analytics in finance-related roles both inside the financial sector (e.g., commercial and investment banking, venture capital, private equity, asset management) and outside the financial sector (e.g., consulting, general management, corporate development, treasury).

Grading Policy

Homework	30%
Group project	35%
Final Presentation	35%

Grading Scale

Number grade	Letter grade	GPA
90-100	A	4.0
85-89	A-	3.7
80-84	B+	3.3
75-79	В	3.0
70-74	B-	2.7
67-69	C+	2.3
65-66	C	2.0
62-64	C-	1.7
60-61	D	1.0
≤59	F (Failure)	0

Class Schedule

Date	Lecture	Readings
Week 1	Installing Python and IPython Notebook	McKinney Ch1
Week 2	Basic Python Language I	McKinney Ch 2
Week 3	Basic Python Language II	McKinney Ch 3
Week 4	NumPy Basics	McKinney Ch 4
Week 5	Getting Started with pandas	McKinney Ch 5
Week 6	Pandas II	McKinney Ch 6, 7
Week 7	Introduction to Machine Learning: Applying Machine Learning to Structured Data	Klaas Ch 1, 2
Week 8	Understanding Time Series	McKinney Ch 10, Ch 11; Klaas Ch 4
Week 9	Parsing Textual Data with Natural Language Processing	Klaas Ch 5
Week 10	Financial Data Applications: Generative Models	Klaas Ch 6
Week 11	Financial Data Applications: Reinforcement Learning	Klaas Ch 7
Week 12	Final Presentation	