

Shanghai Jiao Tong University

MA077 Linear Algebra

Instructor Information	Guofu Yu Home Institution: Shanghai Jiao Tong University Email: gfyu@sjtu.edu.cn Office Hours: Determined by Instructor			
Term	June 28, 2021 - July 29, 2021	Credits	4 units	
Class Hours	Monday through Thursday, 120 mins per teaching day			
Discussion Sessions	2 hours each week, conducted by teaching assistant(s)			
Total Contact Hours	66 contact hours (1 contact hour = 45 mins, 3000 mins in total)			
Required Texts (with ISBN)	Linear Algebra and Its Applications, Fourth Edition (kindle ebook), by David C. Lay. ISBN-13: 978-0-321-38517-8			
Prerequisite	Calculus 1			
The course might be moved to online delivery due to COVID-19 pandemic. Students will be notified once the decision is made.				

Course Overview

The general topics we will cover in this class are systems of linear equations, matrix algebra, and vector spaces. There are many models of biological, economical, or physical systems which are quite complicated mathematically. No matter what the model, though, it is frequently approximated by a linear system in practice. The unifying theme of this class is to study such linear systems from various points of view (algebraically, computationally, and geometrically).

Course Goals

Students should be able to express a linear system in the form of matrix equations and vector equations and solve them. Know the basic properties and operations of matrices. Understand the definitions of determinants and know their computation and applications of determinants. Understand basis and dimension of vector spaces. Understand subspaces related to a matrix and rank of a matrix. Understand the meaning of eigenvalues and eigenvectors of a matrix and use them to diagonalize a matrix. Know the orthogonal sets and projections and solve least-square problems. Understand how to diagonalize a symmetric matrix and deal with quadratic forms.

Grading Policy

Quizzes and Homework	30%
Midterm Examination	30%
Final Examination	40%

Grading Scale

Number grade	Letter grade	GPA
90-100	А	4.0
85-89	A-	3.7
80-84	B+	3.3
75-79	В	3.0
70-74	B-	2.7
67-69	C+	2.3
65-66	C	2.0
62-64	C-	1.7
60-61	D	1.0
≤59	F (Failure)	0

Due to the on-going pandemic, there is a possibility that in-person courses move to online delivery. Students will be notified once the decision is made.

If the in-person courses are to be changed to online courses, we will make a few adjustments:

Lecture: Each lecture will be uploaded on SJTU SCE online learning platform on a daily basis. Students are required to watch them according to the course schedule.

Discussion: There will be two hours open session on ZOOM every week. The attendance of the discussion is important as it is part of your final score.

Office hours: Tuesday afternoon 14:00-15:00

Exam: If the course moves to the online-course, the exam is taken online. We shall send the examination paper just a few minutes before the starting of the examination. Students are required to open their camera videos during the examination. Students must take pictures of their answer sheets and then send them to the given e-mail address.

Class Schedule

Date	Lecture	Readings
Day 1	Linear systems and row reduction	Chapter 1.1-1.2
Day 2	Vector equation, matrix equation and solutions	Chapter 1.3-1.5
Day 3	Linear independence	Chapter 1.5-1.7
Day 4	Linear transformation	Chapter 1.8-1.9
Day 5	Matrix operations and inverse of a matrix	Chapter 2.1-2.2
Day 6	Invertible matrices, matrix partition and factorization	Chapter 2.3-2.5
Day 7	Determinants	Chapter 3.1-3.2
Day 8	Cramer's rule, vector spaces	Chapters 3.3, 4.1
Day 9	Midterm review	
Day 10	Midterm Exam	
Day 11	Null spaces and column spaces	Chapter 4.2-4.3
Day 12	Coordinate system and change of basis	Chapter 4.4, 4.7
Day 13	Dimension and rank	Chapter 4.5-4.6
Day 14	Eigenvalue and eigenvectors	Chapter 5.1-5.2
Day 15	Diagonalization, Inner product, orthogonality	Chapter 5.3-6.1
Day 16	Orthogonal sets and projections	Chapter 6.2-6.3
Day 17	Gram-Schmidt process, least-square problems and application to linear models	Chapter 6.4-6.6
Day 18	Symmetric matrices and quadratic forms	Chapter 7.1-7.2
Day 19	Final review	
Day 20	Final Exam	